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Abstract
We construct a family of quasigraded Lie algebras that admit the Kostant–Adler
scheme. They coincide with quasigraded deformations of the loop algebras
in different gradings. Using them we explicitly construct new non-skew-
symmetric classical r-matrices with spectral parameters. We consider examples
of the constructed algebras and constructed r-matrices corresponding to the
homogeneous quasigrading, Z2-quasigrading and to the principle quasigrading
in detail.

PACS numbers: 02.20.Sv, 02.30.Ik

1. Introduction

One of the most important objects in the theory of classical integrable systems is the classical r-
matrix. The classical (non-dynamical) r-matrix is a g⊗g-valued function (here g is semisimple
or reductive classical matrix Lie algebra) of two complex variables λ and µ that satisfy the
‘generalized’ classical Yang–Baxter equation [1–3]:

[r12(λ, µ), r13(λ, ν)] = [r23(µ, ν), r12(λ, µ)] − [r32(ν, µ), r13(λ, ν)], (1)

where r12(λ, µ) ≡ r(λ, µ) ⊗ 1 etc.
The classical r-matrix gives a possibility of defining the Poisson brackets between the

matrix elements of some Lax matrix L(λ) belonging to the space of g-valued functions of λ:

{L1(λ), L2(µ)} = [r12(λ, µ), L1(λ)] − [r21(µ, λ), L2(µ)]. (2)

Bracket (2) possesses a lot of commuting functions that can be obtained as a decomposition
in the powers of λ of the generating functions Tr Lk(λ) [2, 3]. Hence, each solution of
equation (2) gives the possibility of defining classical integrable Hamiltonian systems with
the Hamiltonian being one of the above commuting functions.
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Usually the main attention in the theory of non-dynamical classical r-matrices and
associated integrable systems is devoted to the so-called skew-symmetric r-matrices [4–10]
such that r21(µ, λ) = −r12(λ, µ). This is explained by the fact that using the skew-symmetric
r-matrix one can construct not only classical integrable systems but also quantum integrable
systems that are known as Gaudin spin chains.

As was shown in our previous papers [15, 16] with each non-skew symmetric solution of
equation (1), it is also possible to associate quantum integrable systems that generalize usual
Gaudin spin chains and coincide with the quantization of the systems of classical integrable
interacting tops proposed by us in [17]. This fact makes the problem of the construction of
non-skew symmetric solutions of equation (1) very important both from the point of view of
classical and quantum integrable systems.

In the present paper, we construct new non-skew symmetric r-matrices r12(λ, µ). In order
to find new non-skew-symmetric solutions of the generalized classical Yang–Baxter equation
we use a connection of this equation with the theory of the infinite-dimensional Lie algebras
[11]. We rely on the fact that each infinite-dimensional Lie algebra g̃ of g-valued functions of λ

that admits a decomposition into a direct sum of two subalgebras g̃ = g̃+ + g̃− (Kostant–Adler
scheme) also admits the classical r-matrix coinciding with the kernel of the operator R [11, 12],
where R = 1

2 (P+ − P−) and P± are the projection operators on the subalgebras g̃±.

Hence, in order to construct new classical r-matrices it is necessary to construct Lie
algebras g̃ admitting decomposition into a direct sum of two subalgebras. In our previous
papers [18–22], we have proposed for this role special quasigraded Lie algebras g̃A with
the decomposition g̃A = g̃A+ + g̃A− realized as the loop space g(λ−1, λ) with a new Lie
bracket, deformed with the help of some matrix A. In the papers [25–28], we combined ideas
[18–22] and ideas of [23, 24] and defined new types of the quasigraded Lie algebras admitting
Kostant–Adler scheme. They coincide with the ‘twisted’ subalgebras of the Lie algebras g̃A

defined with the help of a Zp-grading of finite-dimensional Lie algebras g, or, equivalently,
with some its automorphism σ of the order p. It turned out that for the special choice of the
matrices A it is possible to define twisted subalgebras g̃σ

A ⊂ g̃A in the completely analogous
way as for the case of ordinary loop algebras L(g) [24, 29]. The choice of the corresponding
matrix A depends on the Zp-grading of g or, equivalently, on its automorphism σ of order p.
In the present paper, we establish simple criteria for such the matrices A to define Lie algebra
g̃σ

A. We consider in detail cases of the ‘homogeneous’ gradation, associated with the trivial
automorphism σ,Z2 gradation associated with an involutive automorphism σ and principal
gradation associated with the Coxeter automorphism and explicitly find out the form of the
corresponding matrices A.

In order to construct classical non-skew symmetric r-matrices using the Lie algebra g̃σ
A

we construct two realizations of g̃σ
A in the spaces of matrix-valued functions of λ with the

usual undeformed commutator. The first one is a realization in the space of g-valued irrational
functions of λ and the second one is the ‘rational’ realization of g̃σ

A as a special quasigraded
subalgebra of gl(n) loop algebra. In the first realization we obtain for the corresponding
r-matrices the following explicit formulae:

rσ
A(λ, µ) =

∑p−1
j=0 λjµp−j

∑dim gj

α=1 A(λ)1/2X
j
αA(λ)1/2 ⊗ A(µ)−1/2X−j,αA(µ)−1/2

(λp − µp)
, (3)

where A(λ) = 1 − Aλ,X
j
α is the basis element of the graded subspace gj , X

−j,α is the dual
basic element of the subspace g−j . In the second realization we obtain the ‘gauge-equivalent’
r-matrix rσ ′

A (λ, µ) (see formula (26)). In the loop algebra limit A → 0 both formulae give us
standard r-matrix of Avan and Talon [30] of the loop algebra in the Zp grading.



New non-skew symmetric classical r-matrices and ‘twisted’ quasigraded Lie algebras 1613

We consider in detail examples of r-matrices associated with the homogeneous grading,
Z2 grading and principal grading. We show that in the homogeneous case (p = 1) we recover
the ‘anisotropic’ r-matrix constructed in our previous paper [17].

The structure of the present paper is the following: in the second section we construct
quasigraded Lie algebras g̃A and their twisted subalgebras, in the third section we construct
their realizations, and at last in the fourth section we obtain the corresponding new classical
r-matrices and consider different examples.

2. Quasigraded Lie algebras with K–A decomposition

2.1. ‘Homogeneous’ quasigraded Lie algebras g̃A

Let us remind the following definition [32]:

Definition 2.1. Infinite-dimensional Lie algebra g̃ is called Z-quasigraded of type (p, q) if it
admits the following decomposition:

g̃ =
∑
j∈Z

gj , such that [gi , gj ] ⊂
q∑

k=−p

gi+j+k.

The following proposition holds true [20].

Proposition 2.1. Let g̃ be Z-quasi graded of type (0, 1), or (1, 0). Then g̃ admits a
decomposition into the sum of its two subalgebras g̃ = g̃+ + g̃−.

In order to construct Z-quasigraded algebras of type (0, 1) we will deform a Lie algebraic
structure in loop algebras. We will introduce the new Lie bracket into L(g) = g⊗ Pol(λ, λ−1):

[X ⊗ p(λ), Y ⊗ q(λ)]F = [X, Y ] ⊗ p(λ)q(λ) − F(X, Y ) ⊗ λp(λ)q(λ), (4)

where X, Y ∈ g, p(λ), q(λ) ∈ Pol(λ, λ−1), [ , ] on the righthand side of this identity denotes
the ordinary Lie bracket in g and the map F : g × g → g is skew. It is evident by the
very construction that the Lie algebras with the bracket (4) are the Z-quasi graded algebras of
type (0, 1) with the quasigrading being defined in the standard way by degrees of the spectral
parameter λ.

By the direct calculation one can prove the following proposition [20].

Proposition 2.2. For bracket (4) to satisfy Jacobi identities the cochain F should satisfy the
following two requirements:

(J1)
∑

c.p.{i,j,k}
(F ([Xi,Xj ], Xk) + [F(Xi,Xj ),Xk]) = 0,

(J2)
∑

c.p.{i,j,k}
F(F(Xi,Xj ),Xk) = 0.

Let g be a classical matrix Lie algebra of the type gl(n), so(n) and sp(n) over
the field of the complex or real numbers. We will realize algebra so(n) as follows:
so(n) = {X ∈ gl(n) | X = −sX�s}, where s is some constant symmetric matrix such
that s2 = 1, and the algebra sp(n) is defined as follows: sp(n) = {X ∈ gl(n)|X = sX�s},
where n is an even number, s is a constant skew-symmetric matrix such that s2 = −1.

As it follows from the results of [33] the following proposition holds true.
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Proposition 2.3. Let g be a classical matrix Lie algebra over the field K of complex or real
numbers. Let us define the numerical (K-valued) n × n matrix A of the following type:

(1) A is arbitrary for g = gl(n),
(2) A = sA�s for g = so(n),
(3) A = −sA�s for g = sp(n).

Then the maps FA : g × g → g of the form FA(X, Y ) = [X, Y ]A = XAY − YAX are the
correctly defined skew symmetric maps that satisfy conditions (J1)–(J2).

We will denote the infinite-dimensional Lie algebra with the Lie bracket given by (4) by
g̃A and the finite-dimensional Lie algebra g with the bracket [, ]A by gA.

The Lie bracket in the algebra g̃A has the following explicit form:

[X(λ), Y (λ)]FA
= [X(λ), Y (λ)]A(λ) ≡ [X(λ), Y (λ)] − λ[X(λ), Y (λ)]A, (5)

where X(λ), Y (λ) ∈ L(g) = g ⊗ Pol(λ, λ−1), A(λ) ≡ 1 − λA.

2.2. ‘Twisted’ quasigraded Lie algebras g̃σ
A

In this subsection, we will define another class of the quasigraded Lie algebras of type (0, 1).
They will coincide with the ‘twisted’ subalgebras of the algebras g̃F .

Let g = ∑p−1
k=0 gk be a Z/pZ grading of g. Let us consider the following subspace in g̃F :

g̃σ
F =

⊕
j∈Z

gj ⊗ λj , (6)

where j denotes the class of equivalence of the elements j ∈ Z mod pZ.
The next proposition holds true.

Proposition 2.4. Subspace g̃σ
F is the closed Lie subalgebra in g̃F if and only if

F(gi , gj ) ⊂ gi+j+1. (7)

Remark 1. It is known that the Z/pZ grading of g may be defined with the help of
some automorphism σ of the order p. If we extend automorphism σ to the map σ̂ of the
whole algebra g̃F , defining its action on the space g ⊗ Pol(λ, λ−1) in the standard way [29]:
σ̂ (X ⊗ λk) = σ(X) ⊗ e−2πik/pλk , then the subalgebra g̃σ

F can be defined as a set of its stable
points:

g̃σ
F = {X ⊗ p(λ) ∈ g̃F | σ(X ⊗ p(λ)) = X ⊗ p(λ)}.

From the very definition of g̃σ
F and the commutation relation in g̃F the next result follows.

Proposition 2.5. For the cocycles F satisfiying (7) the algebra g̃σ
F is Z-quasigraded of type

(0, 1).

From this proposition follows, in particular, that the algebra g̃σ
F admits the direct sum

decomposition g̃σ
F = g̃σ+

F + g̃
σ−
F , where

g̃σ+
F =

⊕
j�0

gj ⊗ λj , g̃
σ−
F =

⊕
j<0

gj ⊗ λj . (8)

Remark 2. It is easy to see that the Lie algebra g̃F itself may be viewed as the special case of
the subalgebras g̃σ

F corresponding to the σ ≡ id.
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Now let us pass to the case of the matrix Lie algebras and cochains FA given by
proposition (2.3). In this case, condition (7) can be written in more detail.

Indeed, let us define the map A : g → g by the following formula:

A(X) = 1/2(AX + XA).

Then the following proposition holds true.

Proposition 2.6. Let g be a classical matrix Lie algebra and the cochain F has the form
described in the proposition 2.3. Then condition (7) is satisfied if and only if

A(gi ) ⊂ gi+1. (9)

Proof. It is easy to show that the cochain FA can be rewritten in the following form:

FA(X, Y ) = [A(X), Y ] + [X,A(Y )] − A([X, Y ]).

From this it immediately follows that condition (7) is satisfied if and only if A(gi ) ⊂ gi+1.
�

That proves the proposition.
It is also possible to rewrite condition (9) in the other form.

Proposition 2.7. Conditions (7) and (9) are satisfied if and only if

σ ◦ A = e2π i/pA ◦ σ. (10)

Proof. By the very definition of the automorphism σ that corresponds to the chosen Zp

grading of g we have that σ(gk) = e2π ik/pgk i.e. on the subspaces gk the automorphism σ acts
by multiplication by e2π ik/p. Taking into account that A(gk) ⊂ gk+1, the linearity of A and
the fact that g = ∑p−1

k=0 gk we obtain the statement of the proposition. �

In some cases this condition may be rewritten in a more explicit way as a condition on
matrix A itself. By the direct verification one can prove the following corollary.

Corollary 2.1. Let an automorphism σ of g ⊂ gl(n) could be lifted to the automorphism of
gl(n) as an associative algebra. Then condition (9) is satisfied if and only if

σ(A) = e2π i/pA.

Remark 3. The condition of this corollary is satisfied, for example, in the case when the
automorphism σ is internal, i.e. σ(X) = w0Xw−1

0 for some w0 ∈ G.

We will denote Lie algebra g̃σ
F defined with the help of the cocycle FA by g̃σ

A.

2.2.1. Case of involutive automorphism (σ 2 = id). Let us consider the case of the
automorphism of the second order σ 2 = id, corresponding Lie algebras g̃σ

A. In this case

we have the following decomposition: g = g0 + g1 = k + p. In this case algebra g̃σ
A ⊂ g̃l(n)A

has the following decomposition:

g̃σ
A =

∑
j∈Z

k(2j)λ2j + p(2j+1)λ2j+1.

Commutation relations in the algebra g̃l(n)
σ

A have the form

[k(2i), k(2j)]F ⊂ k(2(i+j) + p(2(i+j)+1), [k(2i), p(2j+1)]F ⊂ p(2(i+j)+1) + k(2(i+j)+2),

[p(2i+1), p(2j+1)]F ⊂ k(2(i+j)+2) + p(2(i+j+1)+1).
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The form of matrix A that satisfies condition (9), strongly depends on the explicit form of the
automorphism σ . There are two substantially different situations.

Proposition 2.8. (i) If an automorphism σ of g ⊂ gl(n) is lifted to an automorphism of
algebra gl(n) as an associative algebra then condition (7) is satisfied if and only if

σ(A) = −A. (11)

(ii) If an automorphism σ of g ⊂ gl(n) is lifted to a minus anti-automorphism of algebra gl(n)

as an associative algebra then condition (7) is satisfied if and only if

σ(A) = A. (12)

Proof. Item (i) of this proposition follows from corollary 2.1. Item (ii) of the proposition is
checked by the direct verification using the explicit form of the cocycle FA. �
Remark 4. In the case g = gl(n) conditions (11) and (12) are equivalent to the condition
A ∈ g1 and A ∈ g0 respectively.

Let us consider the following examples.

Example 1. Let g = gl(n) and g = g0 + g1, where g0 = gl(p) + gl(q), g1 	 C2pq, p + q = n.
The subspaces g0 and g1 have the following explicit form:

g1 = p =
(

0 B

C 0

)
, k = g0 =

(
D1 0
0 D2

)
D1 ∈ Mat(p), D2 ∈ Mat(q), B ∈ Mat(p, q), C ∈ Mat(q, p).

It is easy to show that the corresponding automorphism σ is given by the formula:
σ(X) = wXw−1 where w = diag(1p,−1q), and, hence, is lifted to an automorphism of
gl(n) viewed as an associative algebra. Hence, as it follows from the arguments above:

A ∈ g1 or, equivalently A = (
0 A1
A2 0

)
.

Example 2. This example may be viewed as a restriction of example 1. Let g = so(n)

in the realization by skew-symmetric matrices for which s ≡ 1n, and g = g0 + g1, where
g0 = so(p) + so(q), g1 	 Cpq, p + q = n. The subspaces g0 and g1 have the following
explicit form:

g0 = k =
(

S1 0
0 S2

)
, g1 = p =

(
0 −Ct

C 0

)
,

where S1 ∈ so(p), S2 ∈ so(q). Then, as in the previous case this grading corresponds to
the automorphism σ defined by the formula: σ(X) = wXw−1 where w = diag(1p,−1q).
Hence, matrix A should satisfy the condition σ(A) = −A and, in addition, be symmetric. In

the result we obtain that A = (
0 A1
At

1 0

)
.

Example 3. Let g = gl(n) and g = g0 + g1, where g0 = so(n), g1 	 Symm(n). It is easy to
see that the corresponding automorphism σ is given by the formula: σ(X) = −sX�s (where
s is symmetric matrix such that s2 = 1) and, hence, is lifted to the minus antiautomorphism
of gl(n) viewed as an associative algebra. Hence, as it follows from the arguments above,
σ(A) = A, or, equivalently, A ∈ so(n).

Example 4. Let g = gl(n), n is even number, g = g0 + g1 and g0 = sp(n). It is easy to see
that the corresponding automorphism σ is given by the formula: σ(X) = sX�s, where s is a
matrix of standard symplectic structure in the space Cn (s2 = −1). It is lifted to the minus
antiautomorphism of gl(n) viewed as an associative algebra. Hence, as it follows from the
arguments above, σ(A) = A, or, equivalently, A ∈ sp(n).
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2.2.2. Case of Coxeter automorphism and ‘principal’ quasigrading. Let an algebra g with
the bracket [ , ] be semisimple (reductive) classical Lie algebra of the rank r. Let h ⊂ g be its
Cartan subalgebra, �± be its set of positive(negative) roots, � the set of simple roots, Hi ∈ h

is the basis of Cartan subalgebra Eα, α ∈ � is the corresponding root vectors.
Let us define the so-called principal grading of g [29], putting

degHi = 0, degEαi
= 1, degE−αi

= −1.

It is evident that in such a way we obtain the grading of g: g = ∑h−1
k=0 gk with the graded

subspaces gk be defined as follows: gk = SpanC{Eα} , where α is the root of the height
k i.e. α = ∑r

i=1 kiαi if α ∈ �+, α = −∑r
i=1 kiαi if α ∈ �− and k = ∑r

i=1 ki, h

is a Coxeter number of g. In particular, g0 = h, g1 = SpanC{Eαi
, E−θ |αi ∈ �},

g−1 = SpanC{E−αi
, Eθ |αi ∈ �} and θ is the highest root of the height h − 1.

If the cocycle F satisfies condition (7) we may define the corresponding ‘principal’
quasigraded Lie algebra g̃σ

A in the following way:

g̃σ
A =

∑
m∈Z

h−1∑
j∈0

g
(m)

j
⊗ λj+mh, where g

(m)

j
	 gj . (13)

Let us pass to the consideration of classical matrix Lie algebras. It will be convenient
to chose the realizations of the algebras so(n) and sp(n) such that the Cartan subalgebra
will coincide with the algebra of diagonal matrices. For this purpose we will use the
following matrices s in our definition of the algebras so(n) and sp(n): s = diag(1, s2n),

where s2n = (
0 1n

1n 0

)
, if g = so(2n + 1); s ≡ s2n if g = so(2n); s = (

0 1n−1n 0

)
ifg = sp(n). Now

we can find matrices A that satisfy condition (9) explicitly. The following proposition holds
true [26].

Proposition 9. The cochain FA satisfies condition (7) if and only if the matrix A has the form

1. A = ∑n−1
i=1 aiXii+1 + anXn1 if g = gl(n)

2. A = ∑n−1
i=1 ai(Xi+1,i+2 + Xn+i+2,n+i+1) + an(X1+n,1 + X1,2n+1) + an+1(X2+n3 + X3+n2) if

g = so(2n + 1)

3. A = ∑n−1
i=1 ai(Xi,i+1 + Xn+i+1,n+i ) if g = sp(n)

4. A = ∑n−1
i=1 ai(Xi,i+1 + Xn+i+1,n+i ) + an(Xn,2n−1 + Xn−1,2n) + an+1(X1+n2 + X2+n1) if

g = so(2n).

3. Two realizations of the Lie algebra g̃σ
A

In this section, we will describe two realizations of the Lie algebras g̃σ
A in the spaces of rational

and irrational functions of λ with and ordinary non-deformed Lie brackets. Following remark 2
we will hereafter consider the Lie algebra g̃A to be a special case of the Lie algebras g̃σ

A

corresponding to the trivial automorphism σ .

3.1. Realization of g̃σ
A and g̃σ∗

A in the space of irrational functions

In this subsection, we will describe a realization of the algebra g̃A and g̃σ
A in the space of g-

valued irrational functions on λ. By the direct verification one can easily prove the following
proposition.

Proposition 3.1. There exists a homomorphism φ
(1)
A from the algebra g̃σ

A into the algebra
of g-valued functions on λ equipped with the standard Lie bracket: [X(λ), Y (λ)] =
X(λ)Y (λ) − Y (λ)X(λ) given by the formula: φ

(1)
A (X(λ)) ≡ A(λ)1/2X(λ)A(λ)1/2.
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Remark 5. It is easy to see that ker φ
(1)
A = 0 and, hence this homomorphism provides us an

exact realization of the g̃σ
A in a space of g-valued irrational functions.

Let X
j
α be the basis element of the graded subspace gj . Then the basis in the algebra g̃σ

A

in this realization consists of the following matrix-valued functions:

X̃
j
α = λjA(λ)1/2Xj

αA(λ)1/2, where j ∈ Z. (14)

Let us introduce the standard pairing between g̃σ∗
A and g̃σ

A:

〈X, Y 〉 = resλ=0λ
−1 Tr(X(λ)Y (λ)), (15)

where X(λ) ∈ g̃σ
A, Y (λ) ∈ g̃σ∗

A . Taking into account (see [29]) that (gi , gj ) = 0 if
i + j = 0 mod p we conclude that the basis of the dual space g̃σ∗

A with respect to the natural
pairing (15) consists of the following functions:

Ỹ
j
α = λ−jA(λ)−1/2X−j,αA(λ)−1/2, (16)

where X−j,α is an element dual to X
j
α .

Example 5. Let us consider the case of the ‘homogeneous quasigrading’(σ ≡ id) and the
diagonal matrix A: A = diag(a1, a2, . . . , an). In this case the algebras g̃A have a natural
interpretation as Lie algebras of a special meromorphic functions on higher genus curves.
Indeed, introducing the following notations: λi = (λ−1 − ai)

1/2 it is easy to see that λi satisfy
the second-order algebraic equations:

λ2
i − λ2

j = aj − ai, i, j = 1, n. (17)

Equations (17) define embedding of the algebraic curve H in the linear space Cn with the
coordinates λ1, . . . , λn. The genus of this curve grows with the growth of n. It covers the
standard hyperelliptic curve defined by the following equation: y2 = ∏n

i=1(λ
−1 − ai).

The basis in the spaces g̃A and g̃∗
A consists of the following matrix-valued functions on

the curve H:

X̃m
ij = λm+1λiλjXij and Ỹ m

ij = λ−m−1λ−1
i λ−1

j Xji, i, j = 1, n,m ∈ Z,

where Xij is a basis of a matrix Lie algebra g. For example, for the case g = gl(n) we have that
Xij = Iij , where (Iij )ab = δaiδbj for the case g = so(n) (in the realization by skew-symmetric
matrices for which s ≡ 1n) we have that Xij = Iij − Iji etc.

3.2. Realization of g̃σ
A and g̃σ∗

A as a subalgebras of L(gl(n))

In this subsection, we will describe a realization of the algebra g̃A and g̃σ
A in the space of

gl(n)-valued rational functions of λ.
The following proposition holds true.

Proposition 3.2. There exists a homomorphism φ
(2)
A from the algebras g̃σ

A into the algebra of
gl(n)-valued rational functions of λ equipped with the standard Lie bracket: [X(λ), Y (λ)] =
X(λ)Y (λ) − Y (λ)X(λ) defined by the following formula: φ

(2)
A (X(λ)) ≡ A(λ)X(λ).

Proof. It follows from the following formal equality φ
(2)
A = AdA(λ)1/2 · φ

(1)
A , where A(λ)1/2

may be viewed as an element of the formal Lie group Gl(n)((λ)). �

Remark 6. It is easy to see that ker φ
(2)
A = 0 and, hence this homomorphism provides

us the exact realization of the g̃σ
A in a space of gl(n)-valued rational functions of λ i.e. as
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the subalgebras of the loop algebra L(gl(n)). It is necessary to emphasize that contrary
to the graded subalgebras of the loop algebras, constructed quasigraded subalgebras are not
isomorphic to the corresponding loop algebras. Although there is a homomorphizm φ

(2)
A of

g̃σ
A into L(gl(n)) it could not be interpreted as an isomorphism, because it has no correctly

defined inverse:map (φ
(2)
A )−1 contains the formal power series (1 + Aλ + A2λ2 + · · ·), image

of which does not belong to the space g̃σ
A.

Let X
j
α be the basis element of the graded subspace gj . Then the basis in the algebra g̃σ

A

in this realization consists of the following matrix-valued functions:

X̃
j
α = λjA(λ)Xj

α = λjXj
α − λj+1AXj

α, where j ∈ Z. (18)

Using the standard pairing (15) between g̃σ∗
A and g̃σ

A and taking into account (see [29]) that
(gi , gj ) = 0 if i + j = 0 mod p we obtain that the basis of the dual space g̃σ∗

A consists of the
following functions:

Ỹ
j
α = λ−jX−j,αA−1(λ). (19)

4. Classical r-matrices with spectral parameter and infinite-dimensional algebras
with K–A decomposition

4.1. General construction

In this subsection, we will remind the notion of a classical R-operator, its connection with
solutions of equation (1) and infinite-dimensional Lie algebras (see [1, 11–13]). All the facts
from this subsection will be essentially used in the next section for obtaining new solutions
of (1).

Let g̃ be hereafter some infinite-dimensional Lie algebra of g-valued functions of one
complex variable λ with the natural Lie bracket [ , ]. Let g̃∗ be the dual space to g̃ with respect
to the natural pairing:

〈X(λ), L(λ)〉 = resλ=0λ
−1(X(λ), L(λ)), (20)

where X(λ) ∈ g̃, L(λ) ∈ g̃∗ and (, ) is some invariant form on g. Let the Lie algebra g̃ of g-
valued functions of λ admit linear space decomposition into the direct sum of two subalgebras:
g̃ = g̃+ + g̃−. It is known [11] that in such a case the operator:

R = 1/2(P+ − P−), (21)

where P+, P− are projection operators onto the subalgebras g̃±, satisfies the modified Yang–
Baxter equation [11, 13] and defines the so-called R-matrix bracket on g̃.

It is also known ( see [12]) that if R-operator possesses the kernel:

R(X)(λ) =
∮

µ=0
(r12(λ, µ),X2(µ))2 dµ, (22)

where r12(λ, µ) is a g ⊗ g-valued function of two complex variables, X2 ≡ 1 ⊗ X, ( , )

is an invariant non-degenerated bilinear form on g, then the function r12(λ, µ) satisfies the
‘generalized’ Yang–Baxter equation:

[r12(λ, µ), r13(λ, ν)] = [r23(µ, ν), r12(λ, µ)] − [r32(ν, µ), r13(λ, ν)], (23)

where r12(λ, µ) ≡ r1,2(λ, µ) ⊗ 1 etc.
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Remark 7. Note that equation (23) has an additional symmetry in comparison with a standard
classical Yang–Baxter equation, namely it is invariant with respect to the transformation
r12(λ, µ) → f (µ)r12(λ, µ) where f (µ) is an arbitrary function.

Combining the above facts we obtain the following proposition.

Proposition 4.1. Let a Lie algebra g̃ of g-valued functions of λ admit a linear space
decomposition into the direct sum of two subalgebras: g̃ = g̃+ + g̃−. Let X̃m

α ≡ X̃m
α (λ),

where m ∈ Z, α ∈ 1, dim g be the basis in g̃ agreed with this decomposition i.e. X̃m
α ∈ g̃+

form � 0, X̃m
α ∈ g̃− if m < 0 and α ∈ 1, dim g. Let Ỹ m

α ≡ Ym
α (µ) be the basis in the linear

space g̃∗ dual to the basis X̃m
α in g̃∗ with respect to introduced above pairing 〈, 〉 (20).

Then the function r12(λ, µ) of the form

r1,2(λ, µ) = 1/2

dim g∑
α=1

∑
m�0

X̃m
α (λ) ⊗ Ỹ m

α (µ) −
dimg∑
α=1

∑
m<0

X̃m
α (λ) ⊗ Ỹ m

α (µ)

 (24)

satisfies the generalized classical Yang–Baxter equation (23).

In the previous section, we have constructed a large family of Lie algebras that possess
the decomposition g̃ = g̃+ + g̃−. Using them in the next subsection we will explicitly construct
the corresponding classical r-matrices.

4.2. New non-skew r-matrices from Lie algebras g̃σ
A

Let us now construct a family of the classical r-matrices that correspond to the Lie algebras
g̃σ

A. Using results of subsections 4 and 3.1 we obtain the following statement.

Theorem 4.1. Let g be one of the classical matrix Lie algebras gl(n), so(n) or sp(n) and
σ be their automorphism of order p that defines Zp grading of g. Let a matrix A satisfies
conditions of proposition 2.3 and condition (10). Then the following g ⊗ g-valued irrational
function of the two complex variables λ and µ:

rσ
A(λ, µ) =

∑p−1
j=0 λjµp−j

∑dim gj

α=1 A(λ)1/2X
j
αA(λ)1/2 ⊗ A(µ)−1/2X−j,αA(µ)−1/2

(λp − µp)
(25)

satisfies the generalized classical Yang–Baxter equation (23).

Proof. Theorem is proved by an application of formula (24), using the definition of the basis

in the Lie algebra g̃A and dual space g̃∗
A (14), (16) where (X

j
α)∗ = X−j,α and the expansion of

1/(λp − µp) in the power series in (λ/µ)p and (µ/λ)p. �

Remark 8. Using the realization of g̃σ
A in the space of the gl(n)-valued rational functions,

described in subsection 3.2, or, equivalently, making a gauge transformation of the classical
r-matrix (25), we obtain that it could also be written in the rational form:

rσ ′
A (λ, µ) =

∑p−1
j=0 λjµp−jA1(λ)

(∑dim gj

α=1 X
j
α ⊗ X−j,α

)
A−1

2 (µ)

(λp − µp)
, (26)

where A1(λ) = A(λ)⊗ 1, A−1
2 (µ) = 1 ⊗A−1(µ). Let us note that in this case for all classical

matrix Lie algebras g the r-matrix rσ ′
A (λ, µ) takes values in gl(n) ⊗ gl(n) but not in g ⊗ g.
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4.2.1. Case of ‘homogeneous’ grading (σ = id). Let σ = id and matrix A be diagonal. In
this case formula (25) acquires a simpler form:

rA(λ, µ) = λ

(λ − µ)

n∑
i,j=1

λiλj

µiµj

Xij ⊗ Xji, (27)

where λ2
i = (λ−1 − ai), µ

2
i = (µ−1 − ai).

This r-matrix coincides with the so-called ‘anisotropic’ r-matrix of [17]. It has a nice
geometrical interpretation: it could be viewed as the ‘higher genus r-matrix’ in the sense
that functions λi and µj are living on the covering of the standard hyperelliptic curve. This
r-matrix is equivalent to the non-skew deformation of the rational r-matrix of Yang. It stands
for integrability of the generalized tops, generalized Steklov–Liapunov systems, generalized
Clebshch and Neumann systems, their ‘spin’ generalizations [19–21] and new classically
integrable Gaudin-type magnets [17].

Let us now consider the small rank and small genus examples of the r-matrix (27).

Example 6. Let us consider the case g = so(3), A = diag(a1, a2, a3) in the formula (27):

rA(λ, µ) = λ

(λ − µ)

3∑
i<j

λiλj

µiµj

Xij ⊗ Xij = λ

(λ − µ)

λ1λ2λ3

µ1µ2µ3

3∑
k=1

µk

λk

Xk ⊗ Xk, (28)

where Xk = εijkXij . Multiplying this expression by µµ1µ2µ3 (see remark 6) we obtain

rA(λ, µ) = 1

(µ−1 − λ−1)

3∑
k=1

λ1λ2λ3

λk

µkXk ⊗ Xk

=
3∑

k=1

(λk(u + v) − λk(u − v))Xk ⊗ Xk, (29)

where λk, µk are expressed via the Jacobi elliptic functions of the uniformizing parameters
u, v:

λ1 = 1

sn(u)
, λ2 = dn(u)

sn(u)
, λ3 = cn(u)

sn(u)
,

µ1 = 1

sn(v)
, µ2 = dn(v)

sn(v)
, µ3 = cn(v)

sn(v)
,

λ−1 and µ−1 are the Weierstrass functions of the parameters u and v respectively, and we have
used addition formula [34] that permits to express λk(u ± v) via λk(u) ≡ λk , and λk(v) ≡ µk .

4.2.2. Case of Z2 grading (σ 2 = id). Let us consider the case of the automorphism of the
second-order σ 2 = id, and the corresponding decomposition: g = g0 + g1 = k + p. In this
k∗ = k, p∗ = p. Let X+

α and X−
α be a basis in the linear spaces k and p respectively, X+,α and

X−,α be the dual basis in these spaces and matrix A satisfies conditions (10). Then expression
(26) acquires the form

rσ ′
A (λ, µ) = 1

(λ2 − µ2)
A1(λ)

(
µ2

dim k∑
α=1

X+
α ⊗ X+,α + λµ

dim p∑
α=1

X−
α ⊗ X−,α

)
A−1

2 (µ). (30)

Example 7. Let g = gl(2). Let g = k + p be the corresponding Z2-grading of gl(2) where

k =
(

α1 0
0 α2

)
, p =

(
0 β

γ 0

)
.
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A basis if the linear space k and p constitute matrices

H1 =
(

1 0
0 0

)
, H2 =

(
0 0
0 1

)
and X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Matrix A that satisfies conditions (10) has the form:

A =
(

0 a1

a2 0

)
.

Taking into account that in this case A−1(µ) = (1 + µA)(1 + a1a2µ
2)−1 and multiplying r

matrix (30) by (1 + a1a2µ
2) we obtain

rσ ′
A (λ, µ) = 1

(λ2 − µ2)
(1 − Aλ) ⊗ 1(µ2(H1 ⊗ H1 + H2 ⊗ H2)

+ λµ(X ⊗ Y + Y ⊗ X))1 ⊗ (1 + Aµ). (31)

This r-matrix stands for integrability of the different integrable deformations of the mKdV
and sine-Gordon equations ([25]), in particular, Calodgero–Degasperis and modified sine-
Gordon equations.

4.2.3. Case of the ‘principal’ grading (σ h = id). Let us consider the case of the ‘principal’
grading. In this case formula (26) acquires the form

r
σ ′

c

A (λ, µ) = µh

(λh − µh)

(
A1(λ)

(
dim h∑
i=1

Hi ⊗ Hi +
∑
α∈�

λl(α)µ−l(a)Eα ⊗ E−α

)
A2(µ)−1

)
,

(32)

where matrix A is defined as in proposition 2.9, l(α) is a height of the root α,Eα is a basis
vector of the corresponding root space, Hi is a basis vector of the Cartan subalgebra h ≡ g0

with the following normalization: (Eα,E−α) = 1, (Hi,Hi) = 1.
This r-matrix is exactly a deformation of a trigonometric r-matrix standing behind

integrability of ordinary Toda chain. The r-matrix r
σc

A (λ, µ) in its turn provides integrability
of the ‘deformed’ Toda chain of [26] and of the modified Toda field equations [27].

Example 8. In the case g = gl(n)r-matrix (32) could be written as

r
σ ′

c

A (λ, µ) = 1

(λn − µn)

n−1∑
k=0

λkµn−kA1(λ)

 ∑
i−j=k mod n

Xij ⊗ Xji

 A2(µ)−1, (33)

where Xij is the standard basis of gl(n): (Xij )αβ = δiαδjβ . Taking into account the explicit
form of the matrix A(λ) it is easy to calculate that in the case g = gl(n)

A−1(µ) = (1 + µA)(1 + µn det A)−1.

Taking into account that a non-skew symmetric r-matrix is defined up to the multiplication
by the arbitrary function of µ (remark 6), and multiplying r-matrix (33) by (1 + µn det A) we
obtain

r
σ ′

c

A (λ, µ) = 1

(λn − µn)

n−1∑
k=0

λkµn−k

 ∑
i−j=k mod n

(1 − Aλ)Xij ⊗ Xji(1 + Aµ)

 , (34)

where A = ∑n−1
i=1 aiXii+1 + anXn1. In the case ai = 1 this r-matrix stands for integrability of

the periodic closure of the infinite Voltera coupled system [35].

It is easy to see that in the particular case n = 2 formula (34) yields expression (31).
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